Our efforts are focused on establishing experimental methods for creating designed nanomaterial systems through self-organization. We integrate nanoparticles, biomolecules and polymers into unified systems to take advantage of their unique properties, and to exploit the emergent phenomena. Using tailored nano-structures, molecular recognitions, and macromolecular plasticity, we investigate how to build designed nanoscale systems with precise architectures, re-configuration properties, and the ability to react and process energy.

Our lab develops platform approaches for digitizing bottom-up nano-fabrication, and enabling dynamic control and animation of material systems. The lab explores applications of novel self-assembled nanomaterials for targeted functions, from optics to nanomedicine, and from catalysis to signal processing.

A 3D array of material voxels.

Research Focus

Programmable Nanoscale Assembly

One of the fundamental problems in bottom-up assembly of nanomaterials is difficulty creating arbitrary designed architectures from functionally relevant nanoscale blocks. This problem limits how we build targeted materials, integrate nanoscale blocks and manufacture nanoscale devices.

​Engineered Nanoscale Biomaterials

Novel approaches are required for generating new biologically and chemically active biomaterials. For example, it is advantageous to establish methods for organizing proteins into designed 2D and 3D arrays, which remains a challenge for traditional protein crystallization. The capability to design controllable protein supramolecular structures can allow accumulation of a wealth of information (e.g., structure, genetics, function) onto a single structure, leading to a broad spectrum of application in nanotechnology, biomimetics and nanomedicine.

​Self-Assembled Optical ​Nanomaterials

Architectured nanoparticle systems with light emitting and light absorbing nanoscale components, such as plasmonic nanoparticles and quantum dots, offer novel optical properties due to the collective effects. However, in order to realize tunable optical responses from such hetero-nanoparticle systems, well-defined nano-architectures with targeted nanoparticle arrangements have to be fabricated.


Work done by Professor Gang's group on the development of 3-D ordered nanoscale architectures has been featured by Columbia Engineering, the Fu Fou

The work done by Professor Gang's group on three-dimensional nanoscale superconducting structures has been featured in Materials Today.

11/25/2020 Update: The recent paper from Professor Gang's group in Nature Communications on 3D superconducting nanostructures has received

A paper from Professor Gang's group is featured on the cover of the October 14, 2020 issue of JACS.

Nature Materials features a paper from Professor Gang's group on the cover of the journal's July 2020 issue.